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Classical Chernoff Distance

» Given n i.i.d. samples drawn from one of two probability
distributions over an alphabet A: p(x) and ¢q(z) (z € A).
Equally likely the distribution p or ¢ is used.

» Guess which distribution has been used based on the n
samples.

» Probability of error is
Perr(p,qg;n) = %P(guess q|n samples from p) +
3 P(guess p|n samples from q)

» Guessing according to maximum likelihood rule minimizes
this error probability.



Classical Chernoff Distance

» Large n asymptotic behaviour derived by Chernoff (1952)!.
> Perr (P7 q; n) ~ Q—E(p,q)n'

1
» Where {(p,q) = lim (— log Perr(p,q;n)>, is the
n—oo n

(classical) Chernoff distance and has the following simple
form in terms of the probability distributions:

5 (pa Q) = - log (01’<118121 Z p(l’)sq(x)ls>
T 7 z€A

!The Annals of Mathematical Statistics, Vol. 23, No. 4, pp. 493-507



Quantum Chernoff Distance

» Source produces copies of state pg or state p;. What is best
asymptotic behaviour of error?

» A decision procedure (for given n) can be written as a two
element POVM, {M, 1 — M}; If the outcome corresponding
to M occurs guess p1, otherwise guess py.

» In terms of M:
Perr(pg", 575 M) = 5 (Tr (Mp§™) + T (1 — M) p§™)).
» Well known that the optimal POVM is the
Holevo-Helstrom measurement?.

2C.W. Helstrom, Quantum Detection and Estimation Theory, Academic
Press, New York (1976)
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Quantum Chernoff Distance
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| 4

Perr(pg", p7") = 5 (1= 5l[0F" = o5 1)
What is the asymptotic dependence on n?
Answer was only recently discovered. 4
P, (pg@n, p?n> ~ 2—8(pop1)n

Where the Quantum Chernoff distance is:

€ (po, p1) = —log ( min Tr (pip1~ S))-

Remarkably straightforward generalization of the classical
expression.

Motivates the question: What happens when the states to
be distinguished are distributed between multiple parties?

I will only talk about the bipartite case here.

4«Agymptotic Error Rates in Quantum Hypothesis Testing”, Audenaert
et al., arXiv:0708.4282



Classes of Operations on Bipartite Systems

» LOCC: Local Operations and Classical Communication.
» Separable Operations (SEP):

LeSEP <= L(p) =Y A;®BipAl @ B.
7

» PPT Operations (PPT) °: L € PPT <= T'oLolis
completely positive. Where I' = 1 ® T is the (linear)
partial transpose map.

()

LOCC C SEP ¢ PPT ¢ ALL(CPTP).

SE. M. Rains, “A semidefinite program for distillable entanglement”,
IEEE Trans. Inf. Theory, 47(7):2921-2933 (2001).



Measurements on Bipartite Systems

» Which measurements can be performed with operations in
one of these classes?

» LOCC - hard to characterise.
» A POVM (M;) can be implemented in SEP iff
M; = Zl X, ®Y;.
» A POVM (M;) can be implemented in PPT iff M! > 0.



State Discrimination and Chernoff Distances for
Bipartite Systems

. 1
> PX.(po,p1) i= o ]lrrilz\%)ex 3 (Tr (Mpo) + Tr (1 — M) p1)) -

. 1
> £X (po, p1) := lim (——log Pe)r(r(PE)@n,,O?nQ .
n—oo n
» Containment of classes implies ordering

PLOCC

o (po, p1) = PEYY (pos p1) = Py (pos pr) = Pa™ (po, p1) -
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State Discrimination and Chernoff Distances for
Bipartite Systems

£LOCC (po, p1) < E5EF (po, p1) < EPFT (po, p1) < €AV (po, p1)

Define ¢3¢ (pg, p1) to be the classical Chernoff distance between
the statistics generated by the optimal single copy LOCC
measurement:

€5€ (po, p1) = —log min (Tr (M*po)' =% Tr (M*py)*
0<s<1
+Tr (1 = M*)po)' = Tr (1 — M*)p1)*)
Clearly we have the lower bound:

ESC (PO:PI) < §LOCC (p07;01) :



State Discrimination and Chernoff Distances for
Bipartite Systems

» ¢LOCC ot necessarily 400 for orthogonal states.

> EME(po, p1) = A (po @ T, 1 @ 7).
Not always true in the bipartite LOCC case:
E.g. Let ®x denote a maximally entangled state of
Schmidt rank K.
It can be the case that
¢LOCC(H 0 g, 0 @ Bk) < EHOCC(p, 7), because for some n
Alice and Bob will share enough copies of ® to teleport and
apply global measurements.
If K > dimension of states then
O (paPK, 00Pr) = EM (pa 0k, 00PK) = A (p, 0).



State Discrimination and Chernoff Distances for
Bipartite Systems

» For pure states, LOCC can do just as well as global
measurements 5. So,

OC(luXul, loXel) = A ()l [oXel).-

» For mixed states, LOCC can be much worse than global
measurements, e.g. ‘Data hiding states’.

» Calculate LOCC Chernoff distance for states which give
different behaviour from global measurements.

SWalgate et al. Phys. Rev. Lett. 8(23):4972-4975 (2000);
(quant-ph/0007098); Virmani et al. Phys. Lett. A. 288, p.62
(quant-ph/0102073)

"DiVincenzo et al. Information Theory, IEEE Transactions on, Vol.48,
Iss.3, Mar 2002 Pages 580-598 (quant-ph/0103098)



Strategy

PPT
Perr

v

Finding
problem:

(po, p1) is a semidefinite programming

PR (po, pr) = min'Tr L ((Mpo) + Tr (1~ M) pu))

err

M>0,1—-M>0M">0,(1—-M">0

v

Feasible points of the dual SDP provide lower bounds on

Pe}:ET(Pl,PQ)-

Guess dual optimal solution.

v

v

Guess LOCC protocol which matches the lower bound.

v

If we can do this then we have shown that this protocol is
optimal.



Strategy

» Generally quite hard to do this.

» Use symmetries which are: Shared by p; and p2 and
generated by LOCC.

» In the cases we shall look at this simplifies the problem to
a linear program.



Data Hiding States

2
= - _S,€BC‘®C?
oF a0 1)Sd€ (C*eC?)
2
— B d d
ad_d(d—l)AdE (C*®CY

v

These are the extremal d x d Werner states.

v

Invariant under bi-unitary transformations: U ® U.

v

A generalization of the data hiding states of DiVincenzo et
al.

v

Orthogonal, and therefore perfectly distinguishable
globally, but...

hard to distinguish using LOCC.

v



Data Hiding States

Let F; denote the flip operator on C¢ @ C%:
FalY)a®|9)B = |9)a ® [¢) .

ZI (Gl @ [a)i)" dZI (j| @ |5)i
Sa=(1+ Fg)/2,Ag = (1 — Fy)/2

SY = (1 +ddy)/2, AL = (1 — ddy)/2



Data Hiding: Single Copy Linear Program

» POVM elements can be written as linear combinations of
Sgand Ag: M = 20Sq + 11 Aq4.
» Noting that (z0Sq + xlAd)F =

1 . 1 1 i)
5 (1 <I>d),<1>d)<d+1 1—d ) , we have

Py (04, ) = min (1 + z0 — 71)

0 < i) < 1
0 - X1 - 1
0 1/1 1 X 1
< — < .
(0)<2(aeraa)(2)=(1)
» There is a dual feasible point where the dual objective is

1 [(d-1
) (d-|—1)7 S0

subject to

1/d-1
PPPT > —.
err (O-dﬂad) =9 <d+1>



Data Hiding: Single Copy LOCC Protocol

» Alice and Bob both measure in the computational basis,
obtaining outcomes a and b from {1, ...,d}, respectively.

» If a # b, then they guess ayq.
» If a = b, then they guess oy.

» The wrong guess is made with probability

1 1 1 /d-1
P’ (04,aq) = iP(a # b\ad)+§P(a =blay) = 3 <d+1>+0

» This achieves the lower bound for PPT, so:

1 /d-1
FL0%%(04, aa) = P (00,00) = 5 <d+1> .



Data Hiding: Single Copy LOCC Bias Dimension
Dependence - Worst Case?

» By increasing d we can make the achievable bias arbitrarily
small:
2 1

OCC (0]e]¢;
BL (O'd704d) =1- 2PEI;,,T. (O'd,Oéd) = ﬁ ~ g

» Is this the worst (best) possible dimension dependence?

» For separable measurements it is...



Generic Separable Measurement

» Barnum and Gurvits 8: Every operator in the ball of radius
one in H-S norm centred on the identity is separable.

» Take Holevo-Helstrom POVM (M, 1 — M) and mix in just
enough identity with the elements to ensure that they are
in this ball.

(i) 2 (o))

» Using || M|z < /D, (where D is total dimension of the
system), we find

BSEP > 1 BALL.

2v/D

8H. Barnum, L. Gurvits, “Largest separable balls around the maximally
mixed bipartite quantum state”, Phys. Rev. A 66, 062311 (2002)



Data Hiding: Single Copy + Shared Entanglement

v

What if Alice and Bob share a maximally entangled state
of Schmidt rank K < d?

® i has U ® U invariance.
M=2.(52Pk, Ag® (1 - Pk),Ag®@ Px, Ay @ (1 — Pg)).

Again, we can simplify to a linear program.

vV v vy

A dual feasible point can be found yielding the bound

1/d-K



Data Hiding: Single Copy + Shared Entanglement

» Again, this bound can be achieved by an LOCC protocol:
» Alice performs the POVM (Hf} /K ) on her half of

K-1
the data hiding state, where H%j = Z lj & m)j & m|,
m=0

and tells Bob the outcome j.

» Bob does the projective measurement (H%j, 1- H% j) on
his half of the data-hiding state.

» If the first outcome occurs, the resulting state is the
completely symmetric or anti-symmetric Werner state on a
K x K subspace. Bob teleports his half to Alice with the
entangled state and Alice identifies it without error.

» If the second outcome occurs, they guess that they have
the anti-symmetric Werner state.



Data Hiding: Linear Program for Many Copies

» U ® U invariance on each copy - SDP to LP.

» Invariance under permutations of copies - 2" variables to
n + 1 variables.

» The dual linear program has a feasible point which gives

the bound
1/d—-1\"
PPT [ _®n . ®
Pt (0%, a ")>2<d+1> '



Data Hiding: Protocol for Many Copies

» The following protocol achieves the PPT bound:

» Alice and Bob take each copy separately and measure in the
computational basis, obtaining on the i*” copy the
outcomes a; and b; from {1,...,d}.

» If a; # b; for all i, then they guess ay.

» If a; = b; for some ¢, then they guess gy.

1 1
P’ (0q,aq;n) = §P(w ta; # biloT™) + §P(3¢ L a; = bilad").

. 1/d—1\"
Perr(ad7ad;n)_2<cH_1> .



Data Hiding: LOCC Chernoft Distance

» Whereas PALL (0?”, a?”) =0

PP (") <P (0" 0") = PO (5
1 (d-1\"
T2\d+1)
» So, we have,
P (ag, 0q) =5 (04, aq) = €29C (04, ay)

d+1
d—1

=65%(04, ) = log

» It is notable that we do not need joint measurements to
achieve the optimal result.



LOCC Chernoff Distance for Extremal Isotropic States

1. 1-9,
> Oy =t

» U ® U invariance.

» Copy permutation invariance.
» Again, we can use the dual SDP for PPPT (<I>d, @é—) show

err
that the following protocol is optimal:

» Alice and Bob measure each copy in the computational
basis.

» If for every copy they get the same result then they guess
that they have n copies of ®4, otherwise they know that
they have @j.



LOCC Chernoff Distance for Extremal Isotropic States

» Similar to the extremal Werner state case, all of the
non-global min. errors are equal

pLOCC (‘Pd,q’j) _ pSEP (‘I’d, (I)dL) _ pPPT (‘I’d»q)dl>

err err err

v
C2(d+ 1)

» Again there is an optimal many-copy measurement which
can be performed one copy at a time.

¢hoce (de’q)é_) _¢SEP (%,‘I)j) _ ¢PPT (‘Pd, @j)

—¢5C (@d, @j) —log(d+1).



In Summary

» Dimensional dependence of bias is optimal for separable
measurements - is it for LOCC?

» Data hiding property fails gradually in the presence of
shared entanglement.

» Optimal LOCC protocols determined for discriminating
between the extremal Werner states and between the
extremal isotropic states, when n copies are available.

> £L0CC oy, aq) = €504, aq) = log 411

> (HOCC Dy, 07) = 5C (@g, D7) =log (d+1).

» Thank you.
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